Probing UHECR with Photons

Simplified Picture

Density of Targets + Optical Properties of Medium

Development of Cascade

UHECR from AGN

CR with energies above 10^{19} eV:

$$-E_{
m CR}^2 rac{dN}{dE} ig|_{19} \sim 20 \ {
m eV} \ {
m cm}^{-2} \ {
m s}^{-1} \ {
m sr}^{-1}$$

$$ightarrow rac{L}{V} \sim 10^{37} \ {
m erg} \ {
m Mpc}^{-3} \ {
m s}^{-1}$$

Many weak sources

Few strong sources

Flux	0.01	0.1	1	10	Auger events/yr
Luminosity	10 ⁴⁰	10 ⁴¹	10 ⁴²	10 ⁴³	erg/s @50 Mpc
Number	3000	300	30	3	within 100 Mpc
			$\overline{E_{\gamma}^2 rac{dN}{dE}}$		$> 3 \mathrm{~eV~cm}^{-1}$

Gamma-Rays from AGN: Different Scenarios

Different Interaction Scales

V

resonant-type cross sections

Taylor

Cosmic Background Radiation Fields

The Impedance of Background Radiation to High Energy Protons

$$R = \frac{1}{2\Gamma_p^2} \int_0^\infty \frac{1}{\epsilon_\gamma^2} \frac{dn_\gamma}{d\epsilon_\gamma} d\epsilon_\gamma \int_0^{2\Gamma_p\epsilon_\gamma} d\epsilon_\gamma' \epsilon_\gamma' \sigma_{p\gamma}(\epsilon_\gamma') K_p$$

where R is the energy loss rate

where K_p is the proton inelasticity

The Impedance of Background Radiation to High Energy Photons

The Halo Around Heavenly Bodies (which acc. UHECR)

γ

D

 γ

р

р

 $10^{19} \ {
m eV} \ \gamma - {
m ray}$

The Halo Around Heavenly Bodies (which acc. UHECR)

Cen A as a Local UHECR Source

EeV Cascades

Arriving proton Flux from Different Shells

....associated photon flux from Different Shells

Extragalactic Magnetic Fields

Extragalactic Magnetic Fields

UHE Electron Cooling in Extragalactic Space

Arriving <u>photon</u> Flux from Different Shells (B>0.1 nG)

 $l < 200 \; {
m Mpc}$

 $B > 10^{-10} {
m G}$

Photon Fraction for Different UHECR Composition Models

Nitrogen (Z=7) $E_{\rm max} = (Z/26) 10^{22} {\rm eV}$

Iron (Z=26)
$$E_{\rm max} = (Z/26) 10^{21} {\rm eV}$$

GeV Synchrotron/Cascades (strong B-fields)

Arriving <u>Synchrotron</u> Flux (B>0.1 nG)

 $L_{E,19} = 10^{42} \ {
m erg s}^{-1}$

Kotera et al. (astro-ph/1011.0575)

$$B=10^{-9}~{
m G}$$

 $l = 100 \; \mathrm{Mpc}$

Arriving <u>Synchrotron</u> Flux (B>0.1 nG)

Kotera et al. (astro-ph/1011.0575)

Arriving <u>Synchrotron</u> Flux (B>0.1 nG)

Kotera et al. (astro-ph/1011.0575)

ie. only possible with CTA for bright nearby sources scenario

Arriving Synchrotron Flux for Fe only Composition (B=1 nG)

taken from Kotera et al. (astro-ph/1011.0575)

Cascades in <pG B-Fields

Ahlers et al. (astro-ph/1105.5113)

Steady or Variable Fluxes?

Important (weak) B-Field Scales

 $egin{aligned} & heta = rac{ct_{
m cool}}{R_{
m lar}} \ ct_{
m cool}(10^{13}~{
m eV}) pprox 0.1~{
m Mpc} \end{aligned}$

$$R_{
m lar} = \left(rac{E_e}{10^{13}
m eV}
ight) \left(rac{0.1 \
m pG}{B}
ight) 0.1 \
m Mpc \longrightarrow heta \sim 1 \
m rad.$$

 θ

$$R_{
m lar} = \left(rac{E_e}{10^{13}
m eV}
ight) \left(rac{
m fG}{B}
ight) 10 \
m Mpc \qquad
ightarrow \qquad extsf{ heta} \sim 10^{-2} \
m rad.$$

Time Delay Effects for Different B-field Strengths

Will we Know a Cascade If We See One?

Example: Mrk 501 orphan flare (2009)

astro-ph/1104.2801

Conclusion

The detection of photon component of UHECR would provide definitive evidence that the UHECR cut-off is due to losses

The EeV photon fraction together with the shape of the cut-off in the UHECR spectrum contain useful information about the local (~10s Mpc) UHECR sources. Both Auger + JEM-EUSO have great potential for probing such a component.

The multi-GeV photon component provides an ideal probe for more distant sources. Both angular + temporal signatures can be indicative of a cascade origin. Presently, HESS2, and in the future CTA will be able to probe such emission scenarios.

Important (weak) B-Field Scales

