

Tameda

The Current Status of the Composition Measurements of UHECRs with TA

Intro.

What can **TA** contribute for the solution of UHECR's origin ?

- TA is confirming the shape of spectrum.
- The rest of important topics is mass composition and arrival direction study.

Mass composition of UHECRs

- Nucleus ? (P, He, CNO, Fe or mixed ?)
 - Bottom up model
- Gamma ray, Neutrino ?
 - Top down model

Approaches to Mass composition of UHECRs

- · Nucleus ?
 - Xmax analysis with **fluorescence detectors**.
- · Gamma ray ?
 - · Shower curvature analysis with surface detectors.
 - \cdot Xmax analysis with FD.
 - Neutrino ?
 - \cdot Shower age analysis with SD.
 - \cdot Up-going shower search with FD.

Approaches to Mass composition of UHECRs

· Nucleus ?

· Xmax analysis with **fluorescence detectors**.

· Gamma ray ?

- · Shower curvature analysis with surface detectors.
- · Xmax analysis with FD.
- Neutrino?
 - Shower age analysis with SD.
 - Up-going shower search with FD.

Telescope Array

Xmax analysis with TA FD

FD Shower measurement

Shower Detector Plane(SDP)

$$\chi^2 = \sum_i w^i (\boldsymbol{n} \cdot \boldsymbol{k}^i)^2$$
 n: vector of SDP kⁱ: direction vector of ith PMT

Determination of shower axis on SDP $t_{i} = t_{core} + \frac{1}{c} \frac{\sin \psi - \sin \alpha_{i}}{\sin(\psi + \alpha_{i})} r_{core}$ accuracy : 7.4 degree

FD Shower measurement

Xmax analysis

10

- Xmax is still one of the best parameter to determine the mass composition.
- Comparison b/w Data and MC.
 - FD measurement is suffered from acceptance bias which should be taken into account.
- Shower simulation by CORSIKA
- Detector simulation
 - Check how does our detector simulation reproduce data well.
 - Bias estimation (Acceptance, Reconstruction)
- This analysis is based on the hadronic interaction model which is extrapolated from lower energy.

Various parameters Comparison b/w data and MC (TA FD stereo analysis)

MACROS Nov.27 2013 @ Institut d'Astrophysique de Paris

"TA composition measurements" Y.Tameda

Xmax distribution (TA FD stereo)

MACROS Nov.27 2013 @ Institut d'Astrophysique de Paris

Xmax distribution (TA FD stereo)

MACROS Nov.27 2013 @ Institut d'Astrophysique de Paris

TA FD stereo: Xmax vs logE

K.S. test

K.S. test applies to Xmax distribution of each energy region.

Fe model can be rejected with 95 % C.L.

Averaged Xmax

FD stereo data is consistent with QGSJET - proton model.

MACROS Nov.27 2013 @ Institut d'Astrophysique de Paris

14

MD/SD Hybrid

K-S Probabilit

Proton 0.452

Iron 0.000

Proton Monte Carl

Iron Monte Carlo

K-S Probability

Proton 0.713

Iron 5.26x10

Proton Monte Carlo

X_{MAX} [g/cm²]

K-S Probability

Proton 1.00

Iron 0.0043

Proton Monte Carlo

1000 110 X_{max} [g/cm²]

Iron Monte Carlo

Data

Iron Monte Carlo

Data

Data

M. Allen, ICRC2013

TA FD mono

MACROS Nov.27 2013 @ Institut d'Astrophysique de Paris

Gamma ray, neutrino search with TA SD

Gamma search

- Deep shower maximum and shortage of muons.
 - · ---> curved front.

muons

EM cascade

using Linsley's shower front curvature parameter "a ".

Photon flux limits

Neutrino search

- · Neutrino produces very inclined young shower.
- · Counting wave form peak per detector layer. Neutrino flux limits

G. Rubtsov, ICRC 2013

Mass composition of UHECRs

- Nucleus ? (P, He, CNO, Fe or mixed ?)
 - Proton favor mass composition. (>10^{18.3}eV)
- Gamma ray, Neutrino ?
 - These don't seem to be dominant component.

Next Step

How do we understand the differences of various experiments

How do we understand the differences of various experiments

Analysis approach

Auger's 4 composition model is tested with TA simulation.

- H, He, N, Fe model
- with TA FD bias

TA analysis has enough resolution to distinguish Auger's 4 comp. model.

Common calibration source?

- We flied Auger octocopter light source at TA site.
- The light source is for the energy scale calibration, mainly.
- FD geometry (sensitive to Xmax observation) might be calibrated.

How do we understand the differences of various experiments

Analysis approach

Common calibration source?

TA a procedure, each other.

(⁸⁴⁰) 820 008 780 760 740 720 700 680 660 **Reconstructed mixture** Reconstructed proton 640 Reconstructed iror 620 Hanlon, ICRC 600 19.2 log (E/eV)

nax

TA extensions

- TA Low-energy Extension (TALE)
 - Physics @ 10^{16.5-19}eV
 - Galactic to Extra-galactic transition (2nd knee and ankle, acceleration limit)
 - Source evolution
 - Hadron interaction model
 - Additionally install 10 FD telescopes and 105 SDs.
 - Construction of FDs complete.
 - All telescopes are operational.
 - 35 SDs are deployed.
- TARA (TA Radar)
- NICHE (Non-imaging CHErenkov array)

Summary

- \cdot TA composition
 - \cdot FD data is consistent with QGSJET-Proton model at least $10^{18.3}$ eV.
 - · Gamma-ray and neutrino flux limit is estimated by SD data.
 - UHECR composition is still not concluded.
 - Fundamentally, UHECR composition study has a uncertainty of the hadronic interaction model.
 - · Differences of various experiments.
 - $\cdot\,$ We have a pipe to contact each other to solve this topic.
 - TA Extensions
 - $\cdot\,$ TALE, TARA, NICHE, $\cdots\,$
- $\cdot\,$ TA Extensions will help to understand the hadronic interaction model.

