## Gamma rays from cosmologically distant sources of UHECR

Anton Prosekin, Max-Planck-Institut für Kernphysik, Heidelberg

In collaboration with : Felix Aharonian Stanislav Kelner Alexander Kusenko Warren Essey

## Outline

- Cosmologically distant sources
- Gamma-ray traces of UHECR and IGMF
- Synchrotron gamma rays as signature of UHECR
- Gamma rays from distant blazars as signature of CR
- Conclusion

## Why cosmologically distant sources?

#### With increase of redshift:

- Energetic increases
- Probably more effective accelerators  $e^{\text{supp}_{T}}$
- Number of luminous sources increases
- In context of gamma signatures of UHECR :
- Relaxed requirements for accelerator
- Large redshifts allow to discriminate
   CR induced cascade from blazars



Shankar et al (2009)

## Distribution of AGNs with redshift

• The maximum of the distribution is for most luminous AGNs with L= $10^{45}$ - $10^{48}$  erg/s is at redshift z=2-3.



## Source type distribution

The Second Catalog of Active Galactic Nuclei



More distant and luminous are FSRQs
Small part of BLLacs at z~1



## Gamma-ray traces of UHECR

- Intergalactic medium: CMB+EBL
- Photomeson production (mostly CMB)  $p + \gamma_b \rightarrow p + \pi^0 \rightarrow p + 2\gamma$   $p + \gamma_b \rightarrow n + \pi^+ \rightarrow p + e^- + \overline{\nu}_e + e^+ + \nu_e + \nu_\mu + \overline{\nu}_\mu$ 
  - $p + \gamma_b \rightarrow p + \pi^+ + \pi^- \rightarrow p + e^+ + \nu_e + 2\overline{\nu}_\mu + e^- + \overline{\nu}_e + 2\nu_\mu$
  - Final products  $E_{\gamma} \sim 10^{19} E_{p,20} eV \quad E_{e^{\pm}} \sim E_{v} \sim 5 \cdot 10^{18} E_{p,20} eV$
- Bethe-Heitler pair poduction (CMB+EBL)

 $p + \gamma_b \rightarrow p + e^+ + e^-$ 

- Final products  $E_{e^{\pm}} \sim 10^{15} E_{p,18} eV$
- Pair production  $\gamma + \gamma_b \rightarrow e^+ + e^-$



## Two scenarios 1

- Synchrotron losses > IC losses ( $10^{-10}$  G < B<  $10^{-7}$  G)
  - Energy of electrons is effectively converted to synchrotron gamma rays of GeV and TeV energy band
  - Almost all energy is radiated on the initial part of path





Illustrative: movement of electron in the constant magnetic field

## Two scenarios 2

IC losses > Synchrotron losses

- Electromagnetic cascade:  $\gamma + \gamma_b \rightarrow e^+ + e^- \implies e^{\pm} + \gamma_b \rightarrow e^{\pm} + \gamma$
- Magnetic field 10<sup>-14</sup> G < B< 10<sup>-10</sup> G :
  - Strong deflection
  - Hardly detectable gamma ray halo
- Magnetic field B< 10<sup>-14</sup> G:
  - Collimated beam of gamma rays





Energy loss rates of electrons

## Intergalactic magnetic fields

#### • Clusters of galaxies

- 2 10 Mpc
- B=10<sup>-6</sup> G
- Faraday rotation

#### • Filaments

- 50-80 Mpc
- B=10<sup>-9</sup> 10<sup>-8</sup> G
- Low frequency synchrotron radiation

#### • Voids

- 10-150 Mpc
- $B=10^{-17} 10^{-15} G$
- Electromagnetic cascades from blazars



http://spectrum.ieee.org/aerospace/astrophysics/the-cosmological-supercomputer

## Scenario 1

Synchrotron radiation from the source of UHECR located at environment with strong magnetic field  $10^{-10}$  G < B<  $10^{-7}$  G (filaments)

## Overview



- Small deflection angles of protons and electrons result in collimated beam of synchrotron gamma rays
- Apparent angular size of gamma-ray source is smaller than angular size of the radiation region
- Non-variable source

### Interaction of protons at large redshifts

 Energy loss of UHE protons at different redshifts changes according

 $\beta(E,z) = (1+z)^3 \beta_0((1+z)E)$ 

- Faster energy losses ~(1+z)<sup>3</sup>
  - Interaction lengths are shorter: from 15 Mpc at z=0 to 0.2 Mpc at z=3
- Interaction with more energetic photons ~ 1+z
  - Less energetic protons produces energetic electrons via photo-hadronic interactions
  - Relaxed requirements for acceleration
    - Increase number of UHECR sources seen in gamma rays



Prosekin et al (2011)



- Energy losses of protons with E>10<sup>18</sup> eV increases from 19% to 93%
- Energy transferred to the electrons increases from 13% to 80 %



r, Mpc

For protons with E>10<sup>19</sup> eV

90 100

All the possible energy is transferred at first 5 Mpc at z=3

r, Mpc

For protons with E>10<sup>18</sup> eV

90 100

Considerable part of the energy goes to electrons produced via pair production



- Flux of gamma rays is detectable by Fermi LAT for isotropic luminosity L=10<sup>45</sup> -10<sup>47</sup> erg/s
- For sources at z>0.2 the gamma ray source is point like for Fermi LAT
- Flux is suppressed at TeV energies
- With increase of strength of magnetic field spectra shifts to higher energy proportionally to increase of magnetic field strength
  - At large magnetic fields energetic part of the spectra will be absorbed due to interaction with EBL

## Scenario 2

Gamma rays from electromagnetic cascade induced by cosmic rays in the environment with weak magnetic field  $10^{-17}$  G < B<  $10^{-15}$  G (voids)

## **Distant TeV blazars**

- The flux of blazars with redshift z>0.1 at TeV energies should be significantly suppressed due to gamma-ray absorption in EBL
- Recovered intrinsic spectrum  $F_{obs}(E)exp(\tau(E,z))$  some of them (1ES 0229+200 (z=0.139), 1ES 0347+121 (z=0.185), 1ES 1101+232 (z=0.186)) seems harder than it is expected in standard models with photon index  $\Gamma$ >1.5
- Explanations
  - Intrinsic properties of the radiation
  - Gamma-ray induced cascade
  - Cosmic-ray induced cascade
- Cosmological distant blazars observed at TeV energies the only feasible explanation is cosmic-ray induced cascade



- Protons with energies E=10<sup>17</sup>-10<sup>19</sup> eV has large interaction length relative to pair production process
- In the magnetic field B<10<sup>-15</sup> G protons propagates practically rectilinearly

$$\theta_p \approx 0.05 \operatorname{arcmin}\left(\frac{10^{18} \text{eV}}{E_p}\right) \left(\frac{B}{10^{-15} \text{G}}\right) \left(\frac{L}{\text{Mpc}} \frac{d}{\text{Gpc}}\right)^{1/2}$$

Mean free path without encounter with galaxy cluster

 $L_{\min} \sim 1/(\pi R^2 n) \sim (1-5) \times 10^3 \text{Mpc}$ 

 Encounter of the structure with strong magnetic field significantly suppresses the flux of gamma rays



#### Cascade spectra at small and large redshifts



- For small redshifts spectral shape of secondary photons does not depend on the initial energy of protons with maximum at E=10<sup>11</sup> eV
  - For a nearby source the spectral shape of secondary photons is independent of the details of the proton energy spectrum
- For large redshifts spectral shape of secondary photons significantly depends on initial energy of protons with hardening at E>1 TeV
- For large redshifts mostly the low-energy protons with E~ 10<sup>17</sup> eV enter the gamma-ray transparency zone

## Efficiency of energy transfer to the flux of gamma rays with energy E<sub>v</sub>



- The efficiency reaches maximum of 10% at intermediate redshifts z = 0.1-0.3
- The efficiency falls down to 10<sup>-4</sup>-10<sup>-5</sup> at redshift z~1
- The most efficient transfer of energy for protons with initial energy E=10<sup>18</sup> eV

## Case of PKS 0447-439 at z=1.3

- In spite on the low efficiency protons still can explain TeV radiation from cosmologically distant blazars if B<10<sup>-15</sup> G
- The suppression of flux at GeV energies due to deflection of electrons in the electromagnetic cascade
- To fit the Fermi data the magnetic field should be B~10<sup>-16</sup> G
- If magnetic is strong (B>10<sup>-14</sup> G) in the vicinity of the observer (~100 Mpc), the flux is suppressed at TeV energies



# $\begin{array}{l} \text{Deflection of protons} & \theta_{p} \approx 0.05 \operatorname{arcmin} \left( \frac{10^{18} \text{eV}}{E_{p}} \right) \left( \frac{B}{10^{-15} \text{G}} \right) \left( \frac{L}{\text{Mpc}} \frac{d}{\text{Gpc}} \right)^{1/2} \\ \text{Deflection in the cascade} & \theta_{cas} \approx 3.8 \operatorname{arcmin} \left( \frac{10^{12} \text{eV}}{E_{\gamma}} \right) \left( \frac{B}{10^{-15} \text{G}} \right) \end{array}$

- The main contribution to deflection is from cascade
- Energy-dependent angular broadening can provide a direct measurements of IGMF in a given direction
- Time delay of protons  $\Delta \tau_p \approx 1.5 \cdot 10^6 \text{s} \left(\frac{E_p}{10^{18} \text{eV}}\right)^{-2} \left(\frac{B}{10^{-15} \text{G}}\right)^2 \left(\frac{L}{1 \text{Mpc}}\right) \left(\frac{d}{1 \text{Gpc}}\right)^2$ • Time delay in the cascade  $\Delta \tau_\gamma \approx 1.3 \cdot 10^6 \text{s} \left(\frac{E_\gamma}{10^{12} \text{eV}}\right)^{-5/2} \left(\frac{B}{10^{-15} \text{G}}\right)^2$ 
  - For B~10<sup>-15</sup> G any variability of the initial signal on the scales of the order 1 month and shorter is smeared out
  - In framework of this model any observed variability shorter than month means  $B<10^{-15}$  G
- Isotropic luminosity L=10<sup>50</sup>erg/s is needed
- Luminosity with beaming L=10<sup>47</sup>erg/s which is of the order of Eddington luminosity of black hole with mass M~10<sup>9</sup>M<sub>sol</sub>

## Conclusion

- As AGNs is more active at the epoch of z=2..3 there are more accelerators of UHECR
- The discovery of UHECR sources is possible through their gamma rays signatures
- Two significantly different cases should be distinguished:
- Synchrotron gamma rays
  - Strong nG level magnetic field, short interaction lengths
  - At large redshifts relaxed condition for accelerators
- Gamma rays produced through cascade
  - Weak fG level magnetic field, large interaction length
  - At large redshifts only cosmic rays production in blazars can explain TeV gamma rays