What can we still learn from Auger?
Radio detection and upgrades
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0.1-1 EeV: Enhancements and radio detection at Auger

Above 10 EeV: Upgrades of the surface detector

loana C. Maris

1/20



Radio activities at the Pierre Auger Observatory
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AERA (Auger Engineering Radio Array)
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autonomous trigger radio
array

@ frequency: 30-80 MHz
@ antennas: 24 (150 m), 100

(250 m), 100 (375 m)
17 events, (04-07/2011)

— What is the exact emission mechanism?
— Can the radio technique improve cosmic ray measurements?
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Emission mechanism

Primary emission: Geomagnetic effect Secondary emission: Askarian effect
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@ time varying transverse currents @ time varying net charge excess
o vxB @ radial polarization

Third emission: molecular bremsstrahlung?
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Polarization measurements
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Relative strength of radial wrt. geomagnetic component
a =
(measured from 55 stations, a = 0.14 +0.02 )

(T. Huege, Pierre Auger collaboration, ICRC 2013, submitted to PRD)
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Simulations with /without charge excess
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R quantifies deviations from pure geomagnetic polarization as a function of

observed angle
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EASIER: Detector configuration

Slave detector (trigger and data acquisition from
SD)
MHz detector: 30-80 MHz

GHz detector: 3.4-4.2 GHz




First events
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@ very short distances to the axis
(d < 300m)

@ short pulse length ( At < 75ns )
@ energy: 2.6, 13.2 and 17.1 EeV

Same beamed emission from the MHz range or signal compression from

isotropic emissions ?
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(R. Gaior for the Pierre Auger collaboration, ICRC 2013)
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Preliminary limit on the isotropic emission

(from stations with a distance of more than 300 m
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Auger current picture of UHECRs
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@ Very high quality data and the highest statistics
@ Coherent results in multiple variables
— Can we do more than that?
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WARNING: All the next plots

are preliminary/ work in
progress!|
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Strong motivations to continue with Auger

photo-disintegration? maximum energy at sources?
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@ elucidate the origin of the flux suppression

@ determine the fraction of light elements at the highest energies

@ study of the extensive air-showers and hadronic interactions
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Strong motivations to continue with Auger

photo-disintegration? maximum energy at sources?
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( Taylor & Hooper)
@ elucidate the origin of the flux suppression
@ determine the fraction of light elements at the highest energies
@ study of the extensive air-showers and hadronic interactions
@ we need mass composition sensitivity (Xmax and N, ) with SD
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Universality of air-shower development

10 EeV, 38 degrees
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@ On ground, for a fixed energy, age, and geometry the

Xonax [g/cm?]

lateral distribution functions (LDF) are universal
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If we can obtain N,
and Xpax We win :)
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Xmax and N, from SD

@ From general timing and geometry (shower front
curvature approach): ox,,,. =~ 60g/cm?

@ Separating the em and the muonic time information:

OTXmnr < 30g/cm?
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Core precision
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@ we need at least 100 4 (not to be
dominated by the statistical
fluctuations)

p/Fe difference)

0

@ measure the N, at r < 900m (25%
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Beyond 2015 proposals

Surface detector electronics
o faster FADC sampling 40 MHz — 120 MHz

@ increased dynamic range: small PMT, and 10 bits — 12 bit,
total dynamic range: 19 bits

o improved energy resolution and timing at the highest energies
Huge R&D activities for muon detectors

o scintillators: AMIGA, TOSCA, ASCII

o resistive plate chambers(RPC): MARTA

o layered surface detecor: LSD

High quality events, running the observatory 2017-2023:
10200 (> 10EeV), 60 (> 60 EeV)
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AMIGA-Grande/ TOSCA

@ enlarge the AMIGA enhancement (14 modules already in the field)

@ 10m? segmented scintillator counters with 320 MHz readout electronics
@ different spacing arrays to cover the entire area: 1500 m, 2600 m

@ buried at 70-100 cm below the SD
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AMIGA-Grande/ TOSCA

@ enlarge the AMIGA enhancement (14 modules already in the field)

@ 10m? segmented scintillator counters with 320 MHz readout electronics

o different spacing arrays to cover the entire area: 1500 m, 2600 m
@ buried at 70-100 cm below the SD
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Similar to AMIGA, PMTs different design, close to the WCD
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ASCII

simulations:
mean time distributions detector response
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very easy installation on top of the tank, 2m* scintillators
could cover the entire array with 1500 m spacing
no direct measurement of the muons, but timing information of the signal
shape gives 0 Xmax < 50 g/cm2
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MARTA (Muon Auger RPC for the Tank Array)
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@ Under the tank, with a concrete support

@ Detection module: 1 mm gas gaps between 2 mm thick soda-lime glass
layers, separated by Nylon monofilaments

@ Good muon resolution above a few hundreds meters from the shower axis
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MARTA (Muon Auger RPC for the Tank Array)

@ 2000 = 30
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@ Under the tank, with a concrete support

@ Detection module: 1 mm gas gaps between 2 mm thick soda-lime glass
layers, separated by Nylon monofilaments

@ Good muon resolution above a few hundreds meters from the shower axis
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LSD: Layered surface detector

@ modification of the current SD
station: separate the water
volume in two

@ based on the different light
produced by the electromagnetic
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LSD: Layered surface detector
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Future is bright!

Radio technique
@ emission mechanism understood in the MHz region

o simulations reproduce very well data (LDF, etc)

©

looking forward for the mass composition variables
o exploit new frequency ranges (?)

Upgrades of the surface detecor
o currently: simulations/ R&D going on
@ March 2014: prototypes will be working in the field
@ Summer 2014: decide on the muon detectors

@ 2015-2017: hopefully building measuring building...

©

2017-2023: measuring measuring measuring...

After 2023: build a very large/high precision cosmic ray detector?
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