Newborn Pulsars as Sources of Ultrahigh Energy Cosmic Rays

Ke Fang University of Chicago MACROS Nov 27, 2013

Possible Candidates of UHECR Sources

What have we learnt in 100 years?

What remains unknown?

Ackermann et al (Fermi Collab) '13

What remains unknown?

Galactic - Extragalactic Transition

Galactic - Extragalactic Transition

Galactic - Extragalactic Transition

What remains unknown?

UHECR observables - 1. Spectrum

GZK cutoff and/or end of Emax

intrinsic index ~ 2

GZK Cutoff Greisen, Zatsepin, Kuzmin 1966

$$p + \gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0}$$
$$\rightarrow n + \pi^{+}$$

UHECR observables - 2. Chemical Composition

Auger: Light to Heavy Transition

Not confirmed by North Hemisphere telescopes

UHECR observables - 3. Anisotropy

A tale of newborn pulsars

Blasi, Epstein & Olinto 2000 Arons 2003 KF, Kotera, Olinto 2012, 2013

> Goldreich-Julian charge density at the stellar surface

$$\dot{N}_{GJ} = \frac{\Omega^2 \mu}{Zec}$$

Pulsar spins down due to electromagnetic radiation (neglect GW)

$$\dot{\Omega} = -\frac{\dot{E}_{EM}}{I\Omega} \propto -\mu^2 \Omega^3$$

Particles can be accelerated by the induced E-field

$$E = Ze\Phi\eta = 3 \times 10^{20} Z_{26}\eta_1 \Omega_4^2 \mu_{30.5} eV$$

$$t_{spin}(E) = 1yr \left(\frac{3 \times 10^{20} eV}{E}\right) \frac{Z_{26}\eta_1}{\mu_{30.5}}$$

$$\frac{dN_i}{dE} = 5 \times 10^{23} (Z_{26}\mu_{30.5}E_{20})^{-1} eV^{-1}$$

15

Monte-Carlo propagation hadron interactions simulated with EPOS + CONEX

16

Pulsar Distribution in a Galaxy

log-normally on B <log B> = 12.65 G, σ= 0.55 G
normally on P <P> = 300 ms, σ= 150 ms
pulsar burst rate 1 per 60 yr per galaxy

Integrated Extragalactic Pulsars

Newborn pulsars can be successful UHECR accelerators

Anisotropy Check

$$\begin{split} r_{L} &= 10 Mpc \frac{1}{Z} \frac{E}{10^{20} eV} \left(\frac{B}{10^{-8} G}\right)^{-1} \\ \lambda &\approx 10 - 100 kpc << r_{L} \Rightarrow small deflections \\ \delta \theta^{2} &\approx \frac{r_{structure}}{r_{L}^{2} / l_{c}} \\ \\ \delta \theta_{i} &\simeq 1.7^{\circ} \left(\frac{\bar{r}_{i}}{2 \,\mathrm{Mpc}}\right)^{1/2} \left(\frac{B_{i}}{10^{-8} \,\mathrm{G}}\right) \times \\ & \left(\frac{\lambda_{i}}{0.1 \,\mathrm{Mpc}}\right)^{1/2} \left(\frac{E}{10^{20} \,\mathrm{eV}}\right)^{-1} . \end{split}$$
Kotera et al 2009

Time delay after the deflections

$$\begin{split} \delta t_i &\simeq 0.93 \times 10^3 \, \mathrm{yr} \, \left(\frac{\bar{r}_i}{2 \, \mathrm{Mpc}} \right)^2 \left(\frac{B_i}{10^{-8} \, \mathrm{G}} \right)^2 \times \\ & \left(\frac{\lambda_i}{0.1 \, \mathrm{Mpc}} \right) \left(\frac{E}{10^{20} \, \mathrm{eV}} \right)^{-2} \, . \end{split}$$
Kotera et al 2009

Time the source was lightedTransients, no
source- arrival>> $t_{spin} = 3yr \left(\frac{10^{20} eV}{E}\right) \frac{Z_{26} \eta_1}{\mu_{30.5}}$ => direction
correlation

What about their Galactic Counterparts?

Contribution from Galactic pulsars

KASCADE coll. PRD 87, 081101(R) (2013)

Composition

Testable Scenario?

Neutrino as a smoking gun?

Neutrinos from Integrated Pulsar Sources

Neutrinos from Integrated Pulsar Sources

Conclusion III

Consistent with current detection upper limits; Robustly tested with IC86-5 year and projected ARA-37 3 year operations.

Summary

Backups

Conclusions

Below the knee: hadron acceleration in SNR proved

Transition: additional components may be needed

Above the ankle:
Leading Observatories:

Pierre Auger Observatory: 3,000 km² Argentina
Telescope Array: 700 km² Utah, USA

Agreement on the shape of the spectrum
Composition: controversial
Anisotropies: hints above 60 EeV – no >3σ signal

Newborn pulsars – can significantly contribute above the knee. Testable in 3-4 years.

Multimessenger Approach - v from GRBs

Re-evaluation of diffusive v background -> 10 times smaller

IceCube collaboration, Nature 484 (2012) 351

10⁰

E²F_y (GeV cm⁻²)

10-1

100

Multimessenger Approach - PeV v events

Multimessenger Approach - Cosmogenic v

Detectability of cosmogenic neutrino dependent on source composition, evolution

1. spectrum

2012 CERN working group unified spectrum

energy recaled

2. Chemical Composition

Anisotropy - hot spot around Cen A

Pierre Auger sees an excess in the direction of Centaurus A above 55 EeV

> even for iron primaries Centaurus A can not be the only UHECR source

Extragalactic?? -Yes, particles point at highest energy

rule out Galactic P-CNO as dominant cosmic ray component at E>1EeV Fe at E>20 EeV

UHE-allowed Pulsars

Estimation on Anisotropy

Heavy composition reduces anisotropy levels

Assume sources homogeneously distributed in the disc, small scale anisotropy can be estimated as (Blasi & Amato 2011b)

$$\delta = rac{3}{2^{3/2}\,\pi^{1/2}}\,rac{D(E)}{Hc}$$

Conclusion II Galactic pulsars can contribute between the knee and the ankle!

