Multi-messenger Approaches to Cosmic Rays: Origin and Space Frontiers

Proton and Helium anomalies

Timur Delahaye in collaboration with Guilhem Bernard, Pierre Salati, Richard Taillet, Wei Liu and Yong-Yeon Keum

Based on

- Variance of the Galactic nuclei cosmic ray flux by Bernard, TD, Salati & Taillet Astronomy & Astrophysics (2012), Volume 544, id.A92
- TeV cosmic-ray proton and helium spectra in the myriad model by Bernard, TD, Keum, Liu, Salati & Taillet Astronomy & Astrophysics (2013), Volume 555, id.A48

Is low energy boring ?

PAMELA, ATIC & CREAM

Spectral break around 230 GeV/nuc

$$\Delta \alpha_{p} = +0.2$$
$$\Delta \alpha_{a} = +0.3$$

Consistent with Kascade Grande data

Possible explanations

- Modified acceleration mechanisms (Malkov et al. 2012, Ohira & Ioka 2011)
- New class of source (Stanev et al. 1993 2006, Biermann et al. 2010)
- Very strong spallation (Blasi & Amato 2011, Hörandel et al. 2007)
- Energy dependance of propagation coefficients (Ave et al. 2009)
- Local propagation effects (Evoli et al. 2012, Tomassetti 2012)
- Local Sources (Erlykin & Wolfendale 2011, Thoudam & Hörandel 2012)

Cosmic ray propagation

$$\partial_t \Psi + \vec{\nabla} \cdot \left(\vec{V}_c \Psi - K \vec{\nabla} \Psi \right) + \partial_E \left(b_{loss} \Psi - D_{EE} \partial_E \Psi \right) = Q - D$$

A very successful model

Cosmic ray variance

- The mean flux coming from a large number of point-like sources is the same as the one obtained from a smooth distribution.
- But the distribution has a heavy tail so the central limit theorem does not apply : the second moment of the propagator <G²> diverges

Cosmic ray variance

- The mean value is hence hard to estimate because it takes a long time to converge
- The variance is even worse
- Because there is a non zero probability of having a nearby young source
 - Cut the distribution
 - Study the quantiles
 - Use the catalogue

Cutting the distribution

T

However the flux coming from far away sources has a very small variance

Quantiles

The variance may be infinite but the confidence levels are finite.

Decreasing the supernovæ explosion rate increases the size of the deciles.

Monte Carlo with populations ~3000 SNR v = 1 /century

Catalogues

Green 2009 (27 SNR) & ATNF (Manchester et al. 2005, 157 pulsars) d < 2 kpc & t < 50,000 years

Catalogue

The real sources do not give the same results as the mean

Error from the catalogue

Fits results

model	$K_0 [\rm kpc^2/yr]$	δ	$L \; [kpc]$	$V_{\rm c} [\rm kpc/yr]$	$q_{\rm p}^0 [{\rm GeV^{-1}}]$	$q_{\rm He}^0 \left[({\rm GeV/n})^{-1} \right]$
Α	2.4×10^{-9}	0.85	1.5	1.38×10^{-8}	1.17×10^{52}	3.22×10^{51}
в	2.4×10^{-9}	0.85	1.5	1.38×10^{-8}	0.53×10^{52}	1.06×10^{51}
MED	1.12×10^{-9}	0.7	4	1.23×10^{-8}	15.8×10^{51}	$3.14 imes10^{51}$
model	$\alpha_{\rm p} + \delta$	$\alpha_{\rm He} + \delta$	ν [century ⁻¹]	H injection	He injection	χ^2/dof
Α	2.9	2.8	0.8	0.19	0.05	0.61
в	2.85	2.7	1.4	0.12	0.07	1.09
MED	2.85	2.7	0.8	0.148	0.07	1.3

- Fits go from 50 GeV/nuc to 100 TeV/nuc
- A : propagation parameters are free
- B : same propagation parameters and fixed $\boldsymbol{\nu}$

Model A

Model B

MED

Results

- The data favours a local super nova explosion rate higher than the Galactic one.
- Miryad model requires small diffusive halo
- It requires slightly different injections for p & α

Conclusions

- Though not favoured, fluctuations of the flux, even strong, away from the mean value are possible in the myriad model
- This may question all previous models of cosmic rays : B/C, positrons, anti-protons γ-rays
- However...

AMS-02

AMS-02

So what ?

- Should the AMS-02 data be confirmed, it could help constraining propagation parameters.
- Anisotropies may bring interresting answers.

