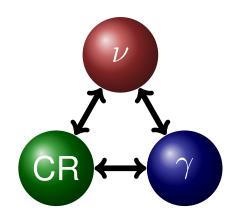
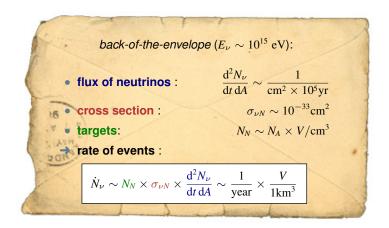
Multi-Messenger Approaches to Cosmic Rays - Neutrino Diagnostics -


Markus Ahlers
UW-Madison & WIPAC

MACROS 2013 Paris, November 28, 2013



- Neutrino astronomy:
 - natural extension: "optical"
 - + "multi-wavelength" + "multi-messenger"
 - ✓ closely **related** to cosmic rays (CRs) and γ -rays
 - ✓ smoking-gun of CR sources
 - weak interaction during propagation
- Challenges:
 - Iow statistics
 - X large backgrounds

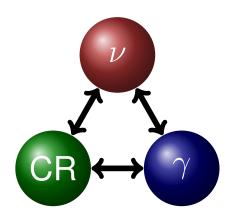
High-energy neutrino detection

- ✗ High energy neutrino collisions with nuclei are rare.
- ✗ Backgrounds are huge and partially irreducible!

 pion production in CR interactions with ambient radiation & matter

$$\pi^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$
$$\pi^0 \to \gamma \gamma$$

· inelasticity:


$$E_{\nu} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

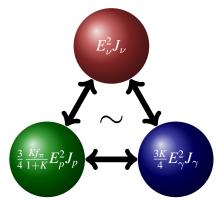
• pion fraction via optical depth:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

 pion production in CR interactions with ambient radiation & matter

$$\pi^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$
$$\pi^0 \to \gamma \gamma$$

inelasticity:


$$E_{\nu} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

pion fraction via optical depth:

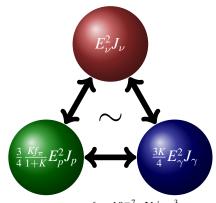
$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

 $(E_{\nu}^2 J_{\nu} \sim \text{energy density } \omega)$

 pion production in CR interactions with ambient radiation & matter

$$\pi^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$
$$\pi^0 \to \gamma \gamma$$

inelasticity:


$$E_{\nu} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

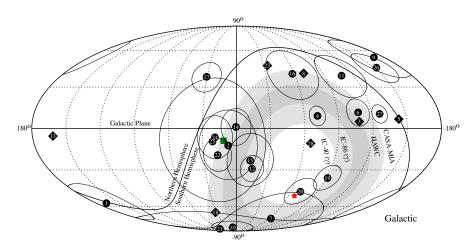
• pion fraction via optical depth:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

$$\omega_{\gamma-\mathrm{bgr}} \simeq 6 \times 10^{-7} \; \mathrm{eV/cm^3}$$

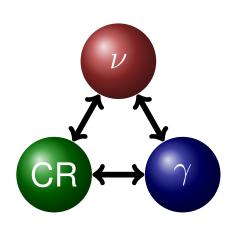
 $\omega_{\mathrm{UHECR}} \simeq 1 \times 10^{-7} \; \mathrm{eV/cm^3}$
 $\omega_{\nu_{\mathrm{vall}}} \simeq 2 \times 10^{-8} \; \mathrm{eV/cm^3}$

"IceCube excess"


IceCube observes 28 events over a period of two years, while 10.6^{+5.0}_{-3.6} are expected from atmospheric contributions.

[→ talk by C.Kopper; IceCube arXiv:1311.5238]

- flux excess at 4.1σ for combined 26+2 fit
- isotropic and flavor-universal
- · no significant time-clustering
- small excess in the Southern Hemisphere even after correction for zenith angle dependent acceptance
- E^{-2} spectrum favors cutoff/break at 2-5 PeV
- "best-fit" of the HESE spectrum


$$E_{\nu}^{2}J_{\nu_{\alpha}}^{\rm IC} \simeq (1.2 \pm 0.4) \times 10^{-8} \text{GeVs}^{-1} \text{cm}^{2} \text{sr}^{-1}$$

"IceCube excess"

[data from IceCube arXiv:1311.5238; MA & Murase arXiv:1309.4077]

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- 1 PeV neutrinos correspond to 20 PeV CR nucleons and 2 PeV γ-rays
- → very interesting energy range:
 - Glashow resonance?
 - · galactic or extragalactic?
 - isotropic or point-sources?
 - chemical composition?
 - pp or $p\gamma$ origin?

- more ν flux properties (non-lceCube & preliminary data):
 - "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021; He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
- typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4E_{\gamma}} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{E_{\gamma}} \right)$$

- **X** GZK neutrinos from optical-UV background ($\Gamma \simeq 1$ / $E_{\gamma} \simeq 10$ eV)
 - [Berezinsky&Zatsepin'69; Roulet et al. 1209.4033]
- **X** prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- prompt neutrino contribution?

- more ν flux properties (non-lceCube & preliminary data):
 - * "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021;He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
- typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4 E_{\gamma}} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{E_{\gamma}} \right)$$

- **X** GZK neutrinos from optical-UV background ($\Gamma \simeq 1$ / $E_{\gamma} \simeq 10$ eV)
 - [Berezinsky&Zatsepin'69; Roulet et al. 1209.4033]
- **X** prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- prompt neutrino contribution?

- more ν flux properties (non-lceCube & preliminary data):
 - "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021;He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
- typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4E_{\gamma}} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{E_{\gamma}} \right)$$

- **X** GZK neutrinos from optical-UV background ($\Gamma \simeq 1$ / $E_{\gamma} \simeq 10$ eV)
 - [Berezinsky&Zatsepin'69; Roulet et al. 1209.4033]
- **x** prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- prompt neutrino contribution?

- more ν flux properties (non-lceCube & preliminary data):
 - "Glashow-excitement" [Barger, Learned & Pakvasa 1306.2309; Bhattacharya et al. 1209.2422]
 - spectral features [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021;He et al. 1307.1450]
 - flavor composition

[Winter 1307.2793]

- neutrinos form pp interactions follow CR spectrum: $E_{
 u, \max} \simeq \frac{1}{20} E_{p, \max}$
- typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_{\nu,\mathrm{pk}} \simeq \frac{1}{20} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4E_{\gamma}} \simeq 8 \mathrm{PeV} \, \Gamma^2 \left(\frac{\mathrm{eV}}{E_{\gamma}} \right)$$

- **X** GZK neutrinos from optical-UV background ($\Gamma \simeq 1$ / $E_{\gamma} \simeq 10$ eV)
 - [Berezinsky&Zatsepin'69; Roulet et al. 1209.4033]
- **X** prompt neutrino emission in GRBs ($\Gamma \simeq 300$ / $E_{\gamma} \simeq 1$ MeV) [Waxman&Bahcall'97]
- prompt neutrino contribution?

Proposed source candidates

extragalactic sources:

- relation to the sources of UHF CRs.
- GZK from low E_{max} blazars
- cores of active galactic nuclei (AGN)
- low-power γ -ray bursts (GRB)
- starburst galaxies [Loeb&Waxman'06; He et al. 1303.1253; Murase, MA & Lacki 1306.3417]
- hypernovae in star-forming galaxies [Liu, Wang, Inoue, Crocker & Aharonian 1310.1263]
- galaxy clusters/groups [Berezinksy, Blasi & Ptuskin'97; Murase, MA & Lacki 1306.3417]

[Kistler, Staney & Yuksel 1301,1703]

[Stecker et al.'91;Stecker 1305.7404]

[Murase & loka 1306.2274]

[Kalashev, Kusenko & Essey 1303.0300]

Proposed source candidates

extragalactic sources:

- relation to the sources of UHE CRs
- GZK from low E_{max} blazars
- cores of active galactic nuclei (AGN)
- low-power γ-ray bursts (GRB)
- starburst galaxies [Loeb&Waxman'06; He et al. 1303.1253; Murase, MA & Lacki 1306.3417]
- hypernovae in star-forming galaxies [Liu, Wang, Inoue, Crocker & Aharonian 1310.1263]
- galaxy clusters/groups [Berezinksy, Blasi & Ptuskin'97; Murase, MA & Lacki 1306.3417]

Galactic sources:

- heavy dark matter decay [Feldstein et al. 1303.7320; Esmaili & Serpico 1308.1105]
- peculiar hypernovae [Fox, Kashiyama & Meszaros 1305.6606; MA & Murase 1309.4077]
- diffuse Galactic γ -ray emission [e.g. Ingelman & Thunman'96; MA & Murase 1309.4077]

• γ -ray association

- unidentified Galactic TeV γ -ray sources
- sub-TeV diffuse Galactic γ -ray emission

[Fox, Kashiyama & Meszaros 1306.6606]

[Kistler, Staney & Yuksel 1301,1703]

[Stecker et al.'91;Stecker 1305.7404]

[Murase & loka 1306.2274]

[Kalashev, Kusenko & Essey 1303.0300]

Neronov, Semikoz & Tchernin 1307.2158

Proposed source candidates

extragalactic sources:

- relation to the sources of UHE CRs
- GZK from low E_{max} blazars
- cores of active galactic nuclei (AGN)
- low-power γ -ray bursts (GRB)
- starburst galaxies [Loeb&Waxman'06; He et al. 1303.1253; Murase, MA & Lacki 1306.3417]
- hypernovae in star-forming galaxies [Liu, Wang, Inoue, Crocker & Aharonian 1310.1263]
- galaxy clusters/groups [Berezinksy, Blasi & Ptuskin'97; Murase, MA & Lacki 1306.3417]

Galactic sources:

- heavy dark matter decay [Feldstein et al. 1303.7320; Esmaili & Serpico 1308.1105]
- peculiar hypernovae [Fox, Kashiyama & Meszaros 1305.6606; MA & Murase 1309.4077]
- diffuse Galactic γ -ray emission [e.g. Ingelman & Thunman'96; MA & Murase 1309.4077]

• γ -ray association:

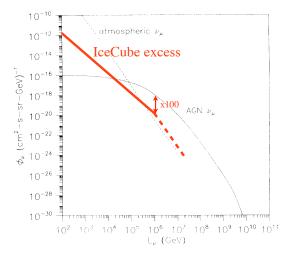
- unidentified Galactic TeV γ -ray sources
- sub-TeV diffuse Galactic γ -ray emission
- [Fox, Kashiyama & Meszaros 1306.6606]

[Kistler, Staney & Yuksel 1301,1703]

[Stecker et al.'91;Stecker 1305.7404]

[Murase & loka 1306.2274]

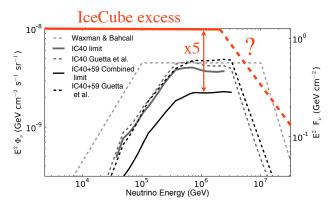
[Kalashev, Kusenko & Essey 1303.0300]


[Neronov, Semikoz & Tchernin 1307.2158]

A. Active Galactic Nuclei

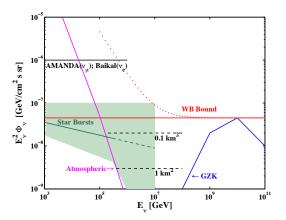
- neutrino interactions from $p\gamma$ interactions in AGN cores
- AGN diffuse emission normalized to X-ray background
- revised model predicts 5% of original estimate

[Steckeret al.'91]


[Stecker'05;'13]

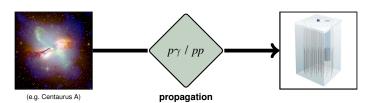
[Stecker et al.'91]

B. Gamma-ray Bursts


- strong limits on neutrino emission associated with the fireball model [Abbasi et al.:12]
- → IceCube excess exceeds IC40+59 limit by factor ~ 5
- loophole: undetected low-power γ-ray bursts (GRB) [Murase & loka 1306.2274]
 → talk by X.Y.Wang in this session

[modified from Abbasi et al.'12]

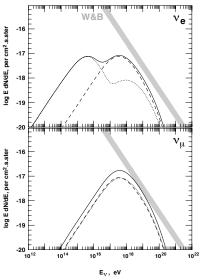
C. Starburst galaxies


- intense CR interactions (and acceleration) in dense starburst galaxies
- cutoff/break feature (0.1-1) PeV at the CR knee (of these galaxies), but very uncertain
- plot shows muon neutrinos on production (3/2 of total)

[Loeb & Waxman'06]

- cos-mo-gen-ic (adj.): "produced by cosmic rays"
- but this is true for all high-energy neutrinos...
- → more specifically: not in the source or atmosphere, but during CR propagation
- most plausibly via pion production in $p\gamma$ interactions, e.g.

$$\begin{aligned} p + \gamma_{\text{bgr}} &\to \Delta \to n + \pi^+ \\ \pi^+ &\to \mu^+ \nu_\mu &\& \mu^+ \to e^+ \bar{\nu}_\mu \nu_e \end{aligned}$$

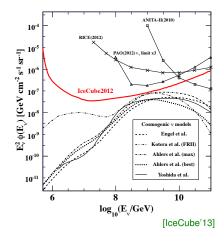


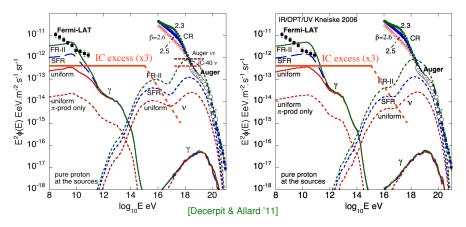
- Greisen-Zatsepin-Kuzmin (GZK)
 interactions of ultra-high energy CRs
 with cosmic microwave background
 (CMB) [Greisen'66;Zatsepin/Kuzmin'66]
- "GZK"-neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin'69]
- three neutrinos $(\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e})$ from π^{+} :

$$E_{\nu_{\pi}} \simeq \frac{1}{4} \langle x \rangle E_p \simeq \frac{1}{20} E_p$$

one neutrino from neutron decay:

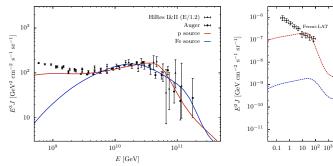
$$E_{\bar{\nu}_e} \simeq \frac{m_n - m_p}{m_n} E_p \simeq 10^{-3} E_p$$

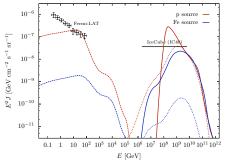

[Engel, Stanev & Seckel'01]


- Greisen-Zatsepin-Kuzmin (GZK)
 interactions of ultra-high energy CRs
 with cosmic microwave background
 (CMB) [Greisen'66;Zatsepin/Kuzmin'66]
- "GZK"-neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin'69]
- three neutrinos $(\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e})$ from π^{+} :

$$E_{
u_{\pi}} \simeq \frac{1}{4} \langle x \rangle E_p \simeq \frac{1}{20} E_p$$

one neutrino from neutron decay:

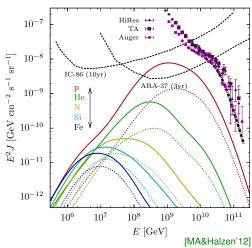

$$E_{\bar{\nu}_e} \simeq \frac{m_n - m_p}{m_r} E_p \simeq 10^{-3} E_p$$



- neutrino flux depend on source evolution model (strongest for "FR-II") and EBL model (highest for "Stecker" model)
- "Stecker" model disfavored by Fermi observations of GRBs
- x strong evolution disfavored by Fermi diffuse background

E. GZK neutrinos from heavy nuclei

- UHE CR emission toy-model:
 - 100% proton: $n = 5 \& z_{\text{max}} = 2 \& \gamma = 2.3 \& E_{\text{max}} = 10^{20.5} \text{ eV}$
 - 100% iron: $n = 0 \& z_{\text{max}} = 2 \& \gamma = 2.3 \& E_{\text{max}} = 26 \times 10^{20.5} \text{ eV}$
- Diffuse spectra of cosmogenic γ -rays (dashed lines) and neutrinos (dotted lines) vastly different. [MA&Salvado'11]

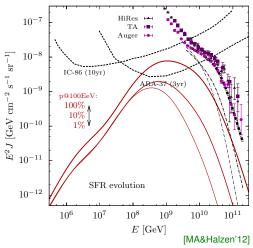

E. GZK neutrinos from heavy nuclei

nucleon spectrum for observed mass number A_{obs}:

$$J_N^{\min}(E_N) = A_{\text{obs}}^2 J_{\text{CR}}(A_{\text{obs}} E_N)$$

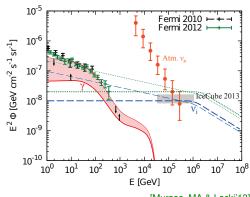
- lower limit by "indefinite" back-tracking of nuclei
- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\text{CR}}(A_i E_N)$$


E. GZK neutrinos from heavy nuclei

nucleon spectrum for observed mass number A_{obs}:

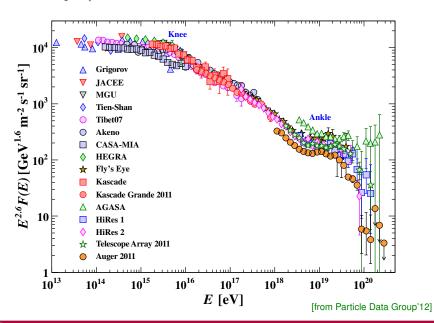
$$J_N^{\min}(E_N) = A_{\mathrm{obs}}^2 J_{\mathrm{CR}}(A_{\mathrm{obs}} E_N)$$


- lower limit by "indefinite" back-tracking of nuclei
- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- generalization to arbitrary composition via

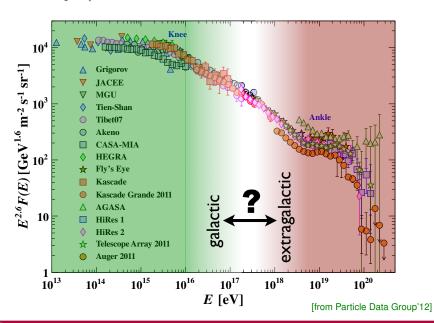
$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\text{CR}}(A_i E_N)$$

F. GeV-TeV γ -ray limits on pp scenario

- neutrino flux in pp scenario follows CR spectrum $\propto E^{-\Gamma}$
- low energy tail of GeV-TeV neutrino/γ-ray spectra
- constraint by extragalactic γ-ray background
- extra-galactic emission: $\Gamma \lesssim 2.2$
- Galactic emission: $\Gamma \lesssim 2.0$
- limits insensitive to redshift evolution effects



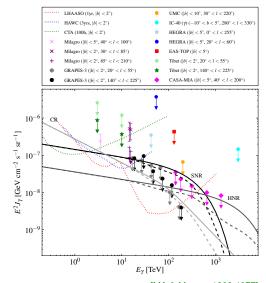
Outlook


- The IceCube excess marks the birth* of HE neutrino astronomy!
- * (4.1σ) background probability: \sim 4 in 100000)
- What's next: → talk by C.Finley after coffee
 - Do we see individual sources or just a diffuse background?
 - What can we learn from spectrum (in particular a possible PeV-ish break) and flavor composition?
 → next talk by R.Laha
 - Is the corresponding CR population responsible for UHE CRs?
- Neutrino astronomy also closes in on cosmogenic neutrino fluxes.
- Will be already see the first hints with IceCube or do we have to wait for future EeV neutrino upgrades (ARA, ARIANNA,...)?
- Full power of multi-messenger astronomy lies in the combination of all
 messengers, in particular γ-rays! → γ-ray afternoon session

Appendix

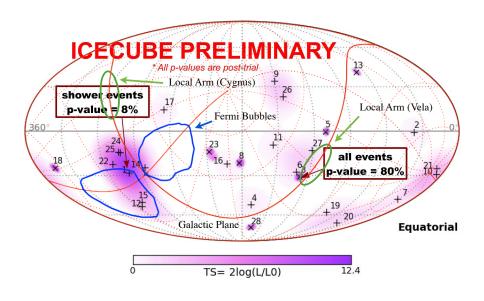
Cosmic ray spectrum

Cosmic ray spectrum

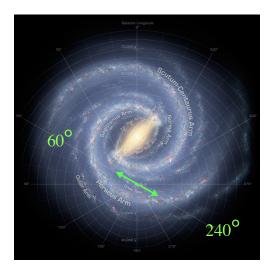

Galactic Plane diffuse fluxes

- diffuse γ -ray emission from CR propagation ($|b| < 2^{\circ}$)
- supernova remnants (SNR): $R_{\rm SN} \simeq 0.03 {\rm yr}^{-1}$ $\mathcal{E}_{\rm ej} \simeq 10^{51} {\rm erg}$ $N_{\rm SNR} \simeq 1200$
- hypernova remnants (HNR): $R_{
 m HN} \simeq 0.01 R_{
 m SN} \ {\cal E}_{
 m ej} \simeq 10^{52} {
 m erg}$
 - $N_{
 m HNR} \simeq 20$ flux concentrated in Galactic

 $J \propto 30\%$ for $|b| < 10^{\circ}$ $J \propto 15\%$ for $|b| < 30^{\circ}$

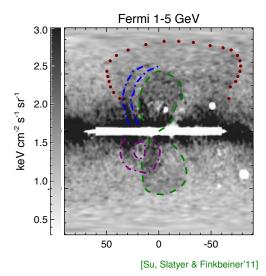

Plane:

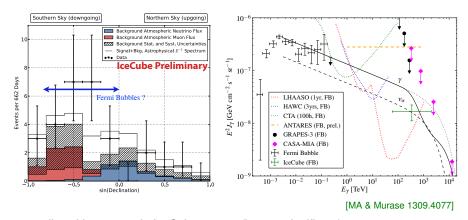
 however, this does not account for local fluctuation



[MA & Murase 1309.4077]

Extended Galactic sources?


Milky Way and Local Arm


Close-by sources in the Local Arm can show up as high-latitude hot spots!

Fermi Bubbles

- two extended GeV γ-ray emission regions close to the Galactic Center [Su, Slatyer & Finkbeiner'10]
- hard spectra and relatively uniform emission
- some correlation with WMAP haze and X-ray observation
- model 1: hadronuclear interactions of CRs accelerated by star-burst driven winds and convected over few 10⁹ years [Crocker & Aharonian'11]
- model 2: leptonic emission from 2nd order Fermi acceleration of electrons [Mertsch & Sarkar'11]
- probed by associated neutrino production [Lunardini & Razzaque'12]

Fermi Bubbles

- small zenith "excess" in IceCube excess (but not significant)
- Galactic Center source(s) of extended source, e.g. "Fermi Bubbles"?

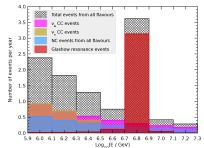
[Finkbeiner, Su & Slatyer'10]

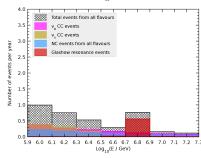
• FB "excess" in agreement with GeV-PeV neutrino & γ -ray observations and limits assuming $\Gamma \simeq 2.2$

Glashow resonance

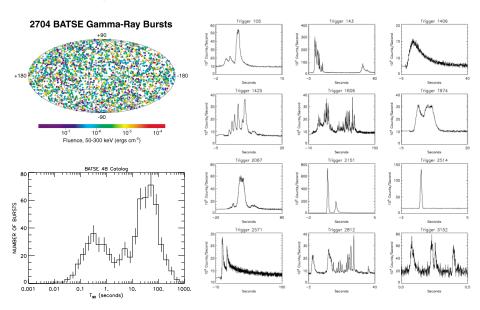
resonant interactions with in-ice electrons:

$$\bar{\nu}_e e^- \to W \to X$$

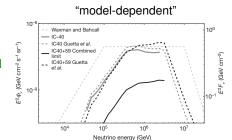

- hadronic (70%) or leptonic (30%) decay
- pp (top plot) and $p\gamma$ (bottom plot) with different flavor ratios and E^{-2} -flux [Bhattacharya, Gandhi, Rodejohann & Watanabe'11]
- early "Glashow-excitement" after Neutrino 2012, Kyoto

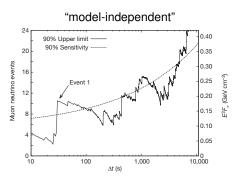

[Barger, Learned & Pakvasa 1207.4571] [Bhattacharya et al. 1209.2422]

- Where are the Glashow events?
- → flavor composition and spectral features

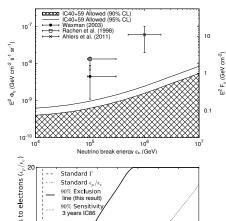

 [Laha et al. 1306.2309; Anchordoqui et al. 1306.5021]

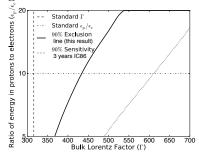
 [He et al. 1307.1450; Winter 1307.2793]




Gamma-ray bursts (GRBs)

IC40+59 results


- Limits on neutrino emission coincident with 215 (85) northern (southern) sky GRBs between April 2008 and May 2010 ("IC40+59"). [Abbasi et al.'11;'12]
- → Model-dependent limit for prompt emission model
- → Model-independent limit for general neutrino coincidences (no spectrum assumed) with sliding time window +∆t from burst.
- Stacked flux below "benchmark" prediction of burst neutrino emission by a factor 3-4. [Guetta et al.'04]
- conversion to diffuse flux via cosmic GRB rate.



IC40+59 results

- IceCube limit below benchmark diffuse models normalized to UHE CR data. [Waxman&Bahcall'03; Rachen et al.'98]
- → IceCube's results challenge GRBs as the sources of UHE CRs!
 - **Limit** on burst neutrino emission depends on neutrino break energy " $\varepsilon_b \propto \Gamma^2$ " (break in optical depth).
 - Results from model-dependent analysis translate into bounds of GRB parameters. [Guetta et al.'04]
- → Neutron emission models largely ruled out. [MA, Gonzalez-Garcia & Halzen'11]

GRB flux normalization

Neutrino predictions depend on model and normalization:

A GRB as the source of UHE CRs?

- \rightarrow calculate the pion energy fraction f_{π} in $p\gamma$ interactions
- → normalize to UHE CRs

[Waxman & Bahcall'97]

A' GRB as the source of UHE CR neutrons?

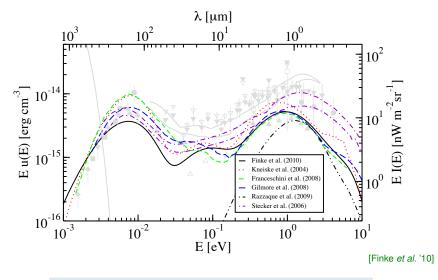
- \rightarrow independent of f_{π}
- normalize to UHE CRs

[Rachen & Mészáros'98; MA, Gonzalez-Garcia & Halzen'11]

B GRB as one source of (UHE) CRs?

→ use bolometric energy arguments about internal energy densities U in shock

$$U_B = \epsilon_B U_{\text{tot}}$$
 $U_e = \epsilon_e U_{\text{tot}}$ $U_p = \epsilon_p U_{\text{tot}}$


- \rightarrow by construction, $\epsilon_B + \epsilon_e + \epsilon_p \lesssim 1$, but otherwise **not well constrained**
- \rightarrow calculate the pion energy fraction f_{π} in $p\gamma$ interactions
- ightharpoonup normalize to CRs in individual bursts, $U_p=(\epsilon_p/\epsilon_e)U_{
 m burst}$ [Guetta *et al.*'04;He *et al.*'12]

GRB model-dependence

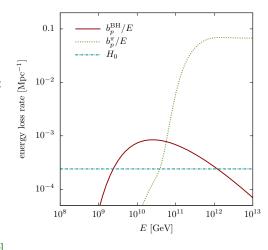
- The parameters Γ_i , ϵ_p and ϵ_e are in general fudge-factors; some indirect observation by GRB afterglow emission.
- Model hierarchy: "A → B" or "not B → not A"
- Heavy nuclei acceleration in internal shocks?
 - issues for model A; large internal shock radii and/or large Lorentz factors needed to reach UHEs
 [Wang,Razzaque&Meszaros'08;Murase et al.'08]
 - generally lower neutrino luminosity due to limited photon density
- Diffuse limits have also dependence on the stochasticity of the tested GRB ensemble.
 [Baerwald, Hümmer&Winter'11]
- Revised calculations of pion fraction f_{π} produce *lower values* than the standard parametrization [Li'11; Baerwald, Hümmer&Winter'11; He *et al.*'12]
- CR production via neutron emission (model A') relates neutrinos and CR protons independent of the absolute value f_{π} ; scenario largely ruled out by IC40+59.

[MA/Gonzalez-Garcia/Halzen'11]

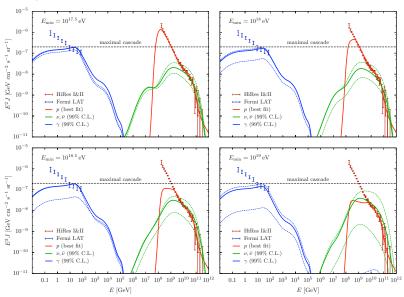
Extra-galactic background light (EBL)

optical-UV background gives PeV neutrino peak

Cosmogenic neutrinos & gamma-rays


 GZK interactions produce neutral and charged pions

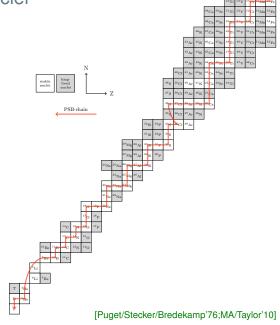
$$p + \gamma_{\text{CMB}} \rightarrow n + \pi^+/p + \pi^0$$


• Bethe-Heitler (BH) pair production:

$$p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^-$$

- → BH is dominant energy loss process for UHE CR protons at $\sim 2 \times 10^9 \div 2 \times 10^{10}$ GeV.
 - EM components cascade in CMB/EBL and contribute to GeV-TeV γ-ray background [Berezinsky&Smirnov'75]

Cosmogenic neutrinos from EBL


[MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar '11]

Propagation of CR nuclei

 fast photo-disintegration of nuclei (mass number
 A = N + Z) beyond the giant dipole resonance (GDR):

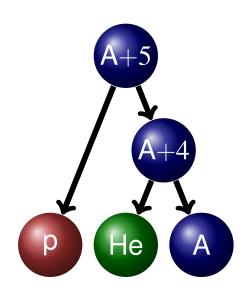
$$\lambda_{\rm GDR} \sim {4\over A}~{
m Mpc}$$

- strong influence of mass composition at very high energy
- → BUT: conserves total number of nucleons with nucleon energy E/A!
- Neutrino production (mostly) via γ-nucleon interaction!

Approximate* scaling law of energy densities

$$\omega_
u \propto \underbrace{\sum_i A_i^{2-\gamma_i} rac{E_{ ext{th}}^2 \mathcal{Q}_i(E_{ ext{th}})}{2-\gamma_i}}_{ ext{composition}} imes \underbrace{\int_0^{z_{ ext{max}}} \mathrm{d}z rac{(1+z)^{n+\gamma_i-4}}{H(z)}}_{ ext{evolution}}$$

* disclaimer:

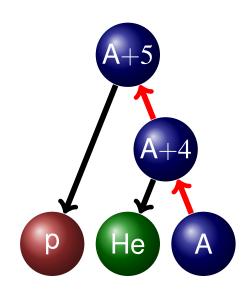

- source composition Q_i with mass number A_i and index γ_i
- applies only to models with large rigidity cutoff $E_{\max,i} \gg A_i \times E_{\text{GZK}}$ previous examples ($z_{\max} = 2 \& \gamma = 2.3$):
- 100% proton: n=5 & $E_{\rm max}=10^{20.5}$ eV $\omega_{\gamma} \propto 1 \times 12$
- 100% iron: n=0 & $E_{\rm max}=26\times 10^{20.5}~{\rm eV}$ $\omega_{\gamma} \propto 0.27\times 0.5$
- \checkmark relative difference: \sim 82.

Nucleon cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

$$b_{A,\mathrm{BH}}(E) \simeq Z^2 \times b_{p,\mathrm{BH}}(E/A)$$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - minimal nucleon emissivity



Nucleon cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

$$b_{A,\mathrm{BH}}(E) \simeq Z^2 \times b_{p,\mathrm{BH}}(E/A)$$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - minimal nucleon emissivity

Cosmogenic neutrinos from heavy nuclei

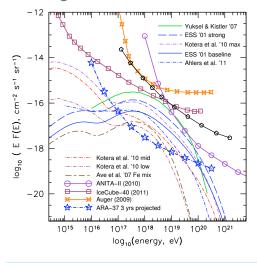


TABLE II: Expected numbers of events $N_{\rm V}$ from several UHE neutrino models, comparing published values from the 2008 ANITA-II flight with predicted events for a three-year exposure for ARA-37.

Model & references N_{v} :	ANITA-II,	ARA,
	(2008 flight)	3 years
Baseline cosmogenic models:		
Protheroe & Johnson 1996 [27]	0.6	59
Engel, Seckel, Stanev 2001 [28]	0.33	47
Kotera, Allard, & Olinto 2010 [29]	0.5	59
Strong source evolution models:		
Engel, Seckel, Stanev 2001 [28]	1.0	148
Kalashev et al. 2002 [30]	5.8	146
Barger, Huber, & Marfatia 2006 [32]	3.5	154
Yuksel & Kistler 2007 [33]	1.7	221
Mixed-Iron-Composition:		
Ave et al. 2005 [34]	0.01	6.6
Stanev 2008 [35]	0.0002	1.5
Kotera, Allard, & Olinto 2010 [29] upper	0.08	11.3
Kotera, Allard, & Olinto 2010 [29] lower	0.005	4.1
Models constrained by Fermi cascade bound:		
Ahlers et al. 2010 [36]	0.09	20.7
Waxman-Bahcall (WB) fluxes:		
WB 1999, evolved sources [37]	1.5	76
WB 1999, standard [37]	0.5	27

[ARA'11]

Best-fit range of GZK neutrino predictions (~two orders of magnitude!) cover various evolution models and source compositions.